What do you mean by term relative velocity ?

Vedclass pdf generator app on play store
Vedclass iOS app on app store

As shown in the figure $\mathrm{S}_{1}$ and $\mathrm{S}_{2}$ are two frames of reference moving with constant velocity w.r.t. to each other. These frames are called inertial reference frames.

If an observer is in $\mathrm{S}_{1}$ and other observer in $\mathrm{S}_{2}$ observes the motion of particle $\mathrm{P}$, then following observation can be used.

Consider the position of particle P from the origin O of S $_{1}$ be given by $\vec{r}_{\mathrm{PS}_{1}}=\overrightarrow{\mathrm{OP}}$ and the position vector of particle $\mathrm{P}$ from $\mathrm{O}^{\prime}$ of $\mathrm{S}_{2}$ is given by $\vec{r}_{\mathrm{P} \mathrm{S}_{2}}=\overrightarrow{\mathrm{O}^{\prime} \mathrm{P}}$. The position vector of origin $\mathrm{O}^{\prime}$ of $\mathrm{S}_{2}$ w.r.t.

$\mathrm{O}$ if $\mathrm{S}_{1}$ is given by $\vec{r}_{\mathrm{S}_{2}, \mathrm{~S}_{1}}=\overrightarrow{\mathrm{OO}}^{\prime}$

Then from the figure,

$\overrightarrow{\mathrm{OP}}=\overrightarrow{\mathrm{OO}^{\prime}}+\overrightarrow{\mathrm{OP}}=\overrightarrow{\mathrm{OP}}+\overrightarrow{\mathrm{OO}^{\prime}}$ $\therefore \vec{r}_{\mathrm{PSS}_{1}}=\vec{r}_{\mathrm{P}, \mathrm{s}_{2}}+\vec{r} \mathrm{~s}_{2}, \mathrm{~s}_{1}$ Differentiating equation (1) w.r.t. time, we get

$\frac{d}{d t}\left(\vec{r} \mathrm{P}, \mathrm{s}_{1}\right)=\frac{d}{d t}\left(\vec{r} \mathrm{P}, \mathrm{s}_{2}\right)+\frac{d}{d t}\left(\rightarrow \overrightarrow{\mathrm{s}}_{2}, \mathrm{~s}_{1}\right)$

$\therefore \overrightarrow{\mathrm{V}} \mathrm{P}, \mathrm{s}_{1}=\overrightarrow{\mathrm{V}} \mathrm{P}, \mathrm{s}_{2}+\overrightarrow{\mathrm{V}} \mathrm{s}_{2}, \mathrm{~s}_{1}$

Here, $\vec{V}_{\mathrm{P}, \mathrm{S}_{1}}$ is the velocity of the particle w.r.t. reference frame $\mathrm{S}_{1}$,

$\vec{V} \mathrm{P}_{1} \mathrm{~S}_{2}$ is the velocity of the particle w.r.t. reference frame $\mathrm{S}_{2}$ and

$\vec{V} \mathrm{~s}_{2}, \mathrm{~s}_{1}$ is the velocity of reference frame $\mathrm{S}_{2}$ w.r.t. frame $\mathrm{S}_{1}$

885-s90

Similar Questions

Three particles, located initially on the vertices of an equilateral triangle of side $L,$ start moving with a constant tangential acceleration towards each other in a cyclic manner, forming spiral loci that coverage at the centroid of the triangle. The length of one such spiral locus will be

A scooter going due east at $10\, ms^{-1}$ turns right through an angle of $90^°$. If the speed of the scooter remains unchanged in taking turn, the change is the velocity of the scooter is

Acceleration versus velocity graph of a particle moving in a straight line starting from rest is as shown in figure. The corresponding velocity-time graph would be

“Explain average acceleration and instantaneous acceleration.”

A particle moves in $x-y$ plane with velocity $\vec v = a\widehat i\, + \,bx\widehat j$ where $a$ & $b$ are constants. Initially particle was at origin then trajectory equation is:-