Show that the area of the triangle contained between the vectors $a$ and $b$ is one half of the magnitude of $a \times b .$
Consider two vectors $\overrightarrow{ OK }=|\vec{a}| {\text { and }} \overrightarrow{ OM }=|\vec{b}|,$ inclined at an angle $\theta$
In $\Delta$ OMN, we can write the relation:
$\sin \theta=\frac{M N}{O M}=\frac{M N}{|\vec{b}|}$
$MN =|\vec{b}| \sin \theta$
$|\vec{a} \times \vec{a}|=|\vec{a}||\vec{b}| \sin \theta$
$= OK \cdot MN \times \frac{2}{2}$
$=2 \times$ Area of $\Delta OMK$
$\therefore$ Area of $\Delta OMK ^{=}=\frac{1}{2}|\vec{a} \times \vec{b}|$
The angle between $(\overrightarrow A - \overrightarrow B )$ and $(\overrightarrow A \times \overrightarrow B )$ is $(\overrightarrow{ A } \neq \overrightarrow{ B })$
A vector has magnitude same as that of $\overrightarrow{\mathrm{A}}-=3 \hat{\mathrm{j}}+4 \hat{\mathrm{j}}$ and is parallel to $\overrightarrow{\mathrm{B}}=4 \hat{\mathrm{i}}+3 \hat{\mathrm{j}}$. The $\mathrm{x}$ and $y$ components of this vector in first quadrant are $\mathrm{x}$ and $3$ respectively where $X$=_____.
If for two vectors $\overrightarrow A $ and $\overrightarrow B ,\overrightarrow A \times \overrightarrow B = 0,$ the vectors
The angle between vectors $(\vec{M} \times \vec{N})$ and $(\bar{N} \times \vec{M})$ is ................