Use suitable identities to find the products : $(x+8)(x-10)$

Vedclass pdf generator app on play store
Vedclass iOS app on app store

$(x+8)(x-10)$

Here,      $a=8$ and $b=(-10)$

$\therefore $ Using $(x+a)(x+b)=x^{2}+(a+b) x+a b$, 

we have :  $(x+8)(x-10) =x^{2}+[8+(-10)] x+[8 \times(-10)]=x^{2}+[-2] x+[-80] $

                     $=x^{2}-2 x-80 $

Similar Questions

Verify whether $2$ and $0$ are zeroes of the polynomial $x^{2}-2 x$.

Determine which of the following polynomials has $(x + 1)$ a factor : $x^{4}+x^{3}+x^{2}+x+1$.

Find the remainder when $x^{3}+3 x^{2}+3 x+1$ is divided by $x+1$

Factorise : $x^{3}-2 x^{2}-x+2$

Factorise $6x^2 + 17x + 5$ by splitting the middle term, and by using the Factor Theorem.