$5\,mm$ અને $10\,mm$ ત્રિજ્યાઓ ધરાવતા અને નિયમિત વિદ્યુતભારીત બે નળાકારીય સુવાહકો $A$ અને $B$ ને $2\,cm$ અંતરે છૂટા પાડેલા છે. જો ગોળાઓને એક સુવાહક તાર વડે જોડવામાં આવે તો, સંતુલન અવસ્થામાં ગોળા $A$ અને $B$ ની સપાટી ઉપર વિદ્યુતક્ષેત્રનાં :મૂલ્યોનો ગુણોત્તર $.......$ થશે.
$1:2$
$2:1$
$1:1$
$1:4$
એક અવાહક ધન ધાતુના ગોળાને $+Q$ વિદ્યુતભાર વડે વિદ્યુતભારીત કરેલો છે. પૃષ્ઠ પર $+Q$ વિદ્યુતભારનું વિતરણ ....... હશે.
$A$ અને $B$ બે વાહક ગોળાઓની ત્રિજ્યાઓ અનુક્રમે $1\, mm$ અને $2 \,mm$ છે અને તેઓ વિદ્યુતભારિત કરેલાં છે તથા $5\, cm$ અંતરે રાખેલા છે. હવે તેમને વાહક તારથી જોડતાં સમતોલન સ્થિતિમાં તેમની સપાટી પરનાં વિદ્યુતક્ષેત્રની તીવ્રતાઓનો ગુણોત્તર ...... છે.
$R$ અને $2R$ ત્રિજ્યા ધરાવતા બે અલગ કરેલા ધાત્વીય ગોળાઓને એવી રીતે વિદ્યુતભારિત કરવામાં આવે છે કે જેથી તરો સમાન વિદ્યુતભાર ઘનતા $\sigma$ હોય. આ બંને ગોળાઓને ત્યારબાદ પાતળા સુવાહક તારથી જોડવામાં આવે છે, ધારો કે મોટા ગોળા પરની નવી વિદ્યુતભાર ઘનતા $\sigma^{\prime}$ હોય તો, ગુણોતર $\frac{\sigma^{\prime}}{\sigma}=.......$ થશે.
સ્થિતવિધુતભારને લગતાં સુવાહકોના અગત્યના પરિણામો લખો.
$(a)$ આકૃતિ $(a)$ માં દર્શાવ્યા મુજબ એક બખોલ $( Cavity )$ ધરાવતા સુવાહક $A$ ને $Q$ વિધુતભાર આપેલ છે. દર્શાવો કે સમગ્ર વિધુતભાર સુવાહકની બહારની સપાટી પર જ દૃશયમાન થશે..
$(b)$ $q$ વિધુતભાર ધરાવતો બીજો સુવાહક, કેવીટી ( બખોલ ) ની અંદર $A$ થી અલગ રહે તેમ દાખલ કરેલ છે. દર્શાવો કે $A$ ની બહારની સપાટી પરનો કુલ વિધુતભાર $Q+q$ ( આકૃતિ $(b)$ ) છે.
$(c)$ એક સંવેદી ઉપકરણને તેના પરિસરમાના ( આસપાસના ) પ્રબળ સ્થિરવિધુત ક્ષેત્રોથી બચાવવું ( $Shield$ કરવું ) છે. આ માટે એક શક્ય ઉપાય સૂચવો.