Two uniform spherical charge regions $S_1$ and $S_2$ having positive and negative charges overlap each other as shown in the figure. Point $O_1$ and $O_2$ are their centres and points $A, B, C$ and $D$ are on the line joining centres $O_1$ and $O_2$. Electric field from $C$ to $D$
increases
first decreases then increases
remains constant
first increases then decreases
What is the magnitude of a point charge due to which the electric field $30\,cm$ away has the magnitude $2\,newton/coulomb$ $[1/4\pi {\varepsilon _0} = 9 \times {10^9}\,N{m^2}/{C^2}]$
For given arrangement, where four charge fixed at ends of as quare as given, find value of additional charge $Q$ to be put on one of the vertices so that component of net electric field along the vertical symmetric axis is zero at every point on the vertical
Two point charges of $20\,\mu \,C$ and $80\,\mu \,C$ are $10\,cm$ apart. Where will the electric field strength be zero on the line joining the charges from $20\,\mu \,C$ charge......$m$
Write equation of electric field by point charge. How does it depend on distance ?
Charge $Q$ is distributed non-uniformly over a ring of radius $R, P$ is a point on the axis of ring at a distance $3R$ from its centre. Which of the following is a wrong statement.