Two spheres of masses $m$ and $M$ are situated in air and the gravitational force between them is $F$ . the space around the masses is now filled with a liquid of specific gravity $3$ . The gravitational force between bodies will now be
$F$
$\frac {F}{3}$
$\frac {F}{9}$
$3F$
Escape velocity at the surface of earth is $11.2\,km/sec$ . If radius of planet is double that of earth but mean density same as that of earth then the escape velocity will be ........ $km/sec$
The kinetic energy needed to project a body of mass $m$ from the earth's surface (radius $R$ ) to infinity is
The escape velocity for a body projected vertically upwards from the surface of earth is $11\, km/s$. If the body is projected at an angle of $45^o$ with the vertical, the escape velocity will be ........... $km/s$
A body tied to a string of length $L$ is revolved in a vertical circle with minimum velocity, when the body reaches the upper most point the string breaks and the body moves under the influence of the gravitational field of earth along a parabolic path. The horizontal range $AC$ of the body will be
On a hypothetical planet satellite can only revolve in quantized energy level i.e. magnitude of energy of a satellite is integer multiple of a fixed energy. If two successive orbit have radius $R$ and $\frac{3R}{2}$ what could be maximum radius of satellite