Two point charges $100\,\mu \,C$ and $5\,\mu \,C$ are placed at points $A$ and $B$ respectively with $AB = 40\,cm$. The work done by external force in displacing the charge $5\,\mu \,C$ from $B$ to $C$, where $BC = 30\,cm$, angle $ABC = \frac{\pi }{2}$ and $\frac{1}{{4\pi {\varepsilon _0}}} = 9 \times {10^9}\,N{m^2}/{C^2}$.........$J$

  • A

    $9$

  • B

    $\frac{{81}}{{20}}$

  • C

    $\frac{9}{{25}}$

  • D

    $-2.25$

Similar Questions

A circle of radius $R$ is drawn with charge $+ q$ at the centre. A charge $q_0$ is brought from point $B$ to $C$, then work done is

  • [AIIMS 2009]

A particle $A$ has charge $ + q$ and a particle $B$ has charge $ + \,4q$ with each of them having the same mass $m$. When allowed to fall from rest through the same electric potential difference, the ratio of their speed $\frac{{{v_A}}}{{{v_B}}}$ will become

State which of the following is correct

A two point charges $4 q$ and $-q$ are fixed on the $x-$axis at $x=-\frac{d}{2}$ and $x=\frac{d}{2},$ respectively. If a third point charge $'q'$ is taken from the origin to $x = d$ along the semicircle as shown in the figure, the energy of the charge will

  • [JEE MAIN 2020]

A square of side ‘$a$’ has charge $Q$ at its centre and charge ‘$q$’ at one of the corners. The work required to be done in moving the charge ‘$q$’ from the corner to the diagonally opposite corner is