Two parallel metal plates having charges $+Q$ and $- Q$ face each other at a certain distance between them. If the plates are now dipped in kerosene oil tank, the electric field between the plates will
decrease
increase
reamain same
become zero
A parallel plate capacitor having capacitance $12\, pF$ is charged by a battery to a potential difference of $10\, V$ between its plates. The charging battery is now disconnected and a porcelain slab of dielectric constant $6.5$ is slipped between the plates. The work done by the capacitor on the slab is.......$pJ$
A capacitor with plate separation $d$ is charged to $V$ volts. The battery is disconnected and a dielectric slab of thickness $\frac{d}{2}$ and dielectric constant ' $2$ ' is inserted between the plates. The potential difference across its terminals becomes
A dielectric slab of dielectric constant $K$ is placed between the plates of a parallel plate capacitor carrying charge $q$. The induced charge $q^{\prime}$ on the surface of slab is given by
A container has a base of $50 \mathrm{~cm} \times 5 \mathrm{~cm}$ and height $50 \mathrm{~cm}$, as shown in the figure. It has two parallel electrically conducting walls each of area $50 \mathrm{~cm} \times 50 \mathrm{~cm}$. The remaining walls of the container are thin and non-conducting. The container is being filled with a liquid of dielectric constant $3$ at a uniform rate of $250 \mathrm{~cm}^3 \mathrm{~s}^{-1}$. What is the value of the capacitance of the container after $10$ seconds? [Given: Permittivity of free space $\epsilon_0=9 \times 10^{-12} \mathrm{C}^2 \mathrm{~N}^{-1} \mathrm{~m}^{-2}$, the effects of the non-conducting walls on the capacitance are negligible]
If a dielectric substance is introduced between the plates of a charged air-gap capacitor. The energy of the capacitor will