Two parallel long current carrying wire separated by a distance $2 \mathrm{r}$ are shown in the figure. The ratio of magnetic field at $\mathrm{A}$ to the magnetic field produced at $C$ is $\frac{x}{7}$. The value of $x$ is $\qquad$

221799-q

  • [JEE MAIN 2024]
  • A

    $5$

  • B

    $4$

  • C

    $3$

  • D

    $2$

Similar Questions

What is the magnetic field at a distance $R$ from a coil of radius $r$ carrying current $I$ ?

  • [AIIMS 2007]

When a certain length of wire is turned into one circular loop, the magnetic induction at the centre of coil due to some current flowing is ${B_1}$ If the same wire is turned into three loops to make a circular coil, the magnetic induction at the center of this coil for the same current will be

Charge $q$ is uniformly spread on a thin ring of radius $R.$ The ring rotates about its axis with a uniform frequency $f\, Hz.$ The magnitude of magnetic induction at the center of the ring is

  • [AIPMT 2011]

A symmetric star conducting wire loop is carrying a steady state current $\mathrm{I}$ as shown in figure. The distance between the diametrically opposite vertices of the star is $4 a$. The magnitude of the magnetic field at the center of the loop is

  • [IIT 2017]

A long straight wire, carrying current $I$ is bent at its mid-point to form an angle of $45^{\circ}$. Induction of magnetic field (in tesla) at point $P$, distant $R$ from point of bending is equal to

  • [AIIMS 2018]