Two identical positive charges are placed on the $y$-axis at $y=-a$ and $y=+a$. The variation of $V$ (electric potential) along $x$-axis is shown by graph

  • A
    213552-a
  • B
    213552-b
  • C
    213552-c
  • D
    213552-d

Similar Questions

The potential at a point, due to a positive charge of $100\,\mu C$ at a distance of $9\,m$, is

The potential at a distance $R/2$ from the centre of a conducting sphere of radius $ R$ will be

In a certain charge distribution, all points having zero potential can be joined by a circle $S$. Points inside $S$ have positive potential and points outside $S$ have negative potential. A positive charge, which is free to move, is placed inside $S$

Six point charges are kept at the vertices of a regular hexagon of side $L$ and centre $O$, as shown in the figure. Given that $K=\frac{1}{4 \pi \varepsilon_0} \frac{q}{L^2}$, which of the following statement $(s)$ is (are) correct?

$(A)$ the elecric field at $O$ is $6 K$ along $O D$

$(B)$ The potential at $O$ is zero

$(C)$ The potential at all points on the line $PR$ is same

$(D)$ The potential at all points on the line $ST$ is same.

  • [IIT 2012]

A charge $ + q$ is fixed at each of the points $x = {x_0},\,x = 3{x_0},\,x = 5{x_0}$..... $\infty$, on the $x - $axis and a charge $ - q$ is fixed at each of the points $x = 2{x_0},\,x = 4{x_0},x = 6{x_0}$,..... $\infty$. Here ${x_0}$ is a positive constant. Take the electric potential at a point due to a charge $Q$ at a distance $r$ from it to be $Q/(4\pi {\varepsilon _0}r)$. Then, the potential at the origin due to the above system of charges is

  • [IIT 1998]