Two identical positive charges are fixed on the $y$ -axis, at equal distances from the origin $O$. A particle with a negative charge starts on the $x$ -axis at a large distance from $O$, moves along the $+ x$ -axis, passes through $O$ and moves far away from $O$. Its acceleration $a$ is taken as positive in the positive $x$ -direction. The particle’s acceleration a is plotted against its $x$ -coordinate. Which of the following best represents the plot?
The figures below depict two situations in which two infinitely long static line charges of constant positive line charge density $\lambda$ are kept parallel to each other. In their resulting electric field, point charges $q$ and $- q$ are kept in equilibrium between them. The point charges are confined to move in the $x$ direction only. If they are given a small displacement about their equilibrium positions, then the correct statement$(s)$ is(are)
A positive charge particle of $100 \,mg$ is thrown in opposite direction to a uniform electric field of strength $1 \times 10^{5} \,NC ^{-1}$. If the charge on the particle is $40 \,\mu C$ and the initial velocity is $200 \,ms ^{-1}$, how much distance (in $m$) it will travel before coming to the rest momentarily
A charged particle of mass $m = 2\ kg$ and charge $1μC$ is projected from a horizontal ground at an angle $\theta = 45^o$ with speed $10\ ms^{-1}$ . In space, a horizontal electric field towards the direction of projection $E = 2 \times 10^7\ NC^{-1}$ exists. The range of the projectile is......$m$
A uniform electric field of $10\,N / C$ is created between two parallel charged plates (as shown in figure). An electron enters the field symmetrically between the plates with a kinetic energy $0.5\,eV$. The length of each plate is $10\,cm$. The angle $(\theta)$ of deviation of the path of electron as it comes out of the field is $.........$(in degree).
A charged particle of mass $m$ and charge $q$ is released from rest in a uniform electric field $E.$ Neglecting the effect of gravity, the kinetic energy of the charged particle after ‘$t$’ second is