Two identical conducing spheres having unequal positive charges $q_1$ and $q_2$ separated by distance $r$. If they are made to touch each other and then separated again to the same distance. The electrostatic force between the spheres in this case will be (neglect induction of charges)
Less than before
Same as before
More then before
Zero
When the distance between the charged particles is halved, the force between them becomes
A negatively charged particle $p$ is placed, initially at rest, in $a$ constant, uniform gravitational field and $a$ constant, uniform electric field as shown in the diagram. What qualitatively, is the shape of the trajectory of the electron?
A paisa coin is made up of $\mathrm{Al - Mg}$ alloy and weighs $0.75\, g$ It is electrically neutral and contains equal amounts of positive and negative charge of magnitude $34.8$ $\mathrm{kC}$. Suppose that these equal charges were concentrated in two point charges separated by :
$(i)$ $1$ $\mathrm{cm}$ $(\sim \frac{1}{2} \times $ diagonal of the one paisa coin $)$
$(ii)$ $100\,\mathrm{m}$ $(\sim $ length of a long building $)$
$(iii)$ $10^6$ $\mathrm{m}$ (radius of the earth).
Find the force on each such point charge in each of the three cases. What do you conclude from these results ?
A certain charge $Q$ is divided into two parts $q$ and $(Q-q) .$ How should the charges $Q$ and $q$ be divided so that $q$ and $(Q-q)$ placed at a certain distance apart experience maximum electrostatic repulsion?