Two identical circular wires of radius $20\,cm$ and carrying current $\sqrt{2}\,A$ are placed in perpendicular planes as shown in figure. The net magnetic field at the centre of the circular wire is $.............\times 10^{-8}\,T$. (Take $\pi=3.14$ )
$689$
$546$
$487$
$628$
Infinite number of straight wires each carrying current $I$ are equally placed as shown in the figure. Adjacent wires have current in opposite direction. Net magnetic field at point $P$ is
A length $L$ of wire carries a steady current $I$. It is bent first to form a circular plane coil of one turn. The same length is now bent more sharply to give a double loop of smaller radius. The magnetic field at the centre caused by the same current is
Charge $q$ is uniformly spread on a thin ring of radius $R.$ The ring rotates about its axis with a uniform frequency $f\, Hz.$ The magnitude of magnetic induction at the center of the ring is
Find the magnitude of magnetic field at point $p$ due to a semi - infinite wire given below
The fractional change in the magnetic field intensity at a distance $'r'$ from centre on the axis of current carrying coil of radius $'a'$ to the magnetic field intensity at the centre of the same coil is : (Take $r << a )$