Two forces of magnitude $8 \,N$ and $15 \,N$ respectively act at a point. If the resultant force is $17 \,N$, the angle between the forces has to be .......
$60$
$45$
$90$
$30$
Let $\overrightarrow C = \overrightarrow A + \overrightarrow B $ then
Two forces of magnitude $3\;N$ and $4\;N $ respectively are acting on a body. Calculate the resultant force if the angle between them is $0^o$
Which pair of the following forces will never give resultant force of $2\, N$
Statement $I:$ If three forces $\vec{F}_{1}, \vec{F}_{2}$ and $\vec{F}_{3}$ are represented by three sides of a triangle and $\overrightarrow{{F}}_{1}+\overrightarrow{{F}}_{2}=-\overrightarrow{{F}}_{3}$, then these three forces are concurrent forces and satisfy the condition for equilibrium.
Statement $II:$ A triangle made up of three forces $\overrightarrow{{F}}_{1}, \overrightarrow{{F}}_{2}$ and $\overrightarrow{{F}}_{3}$ as its sides taken in the same order, satisfy the condition for translatory equilibrium.
In the light of the above statements, choose the most appropriate answer from the options given below:
Find the resultant of three vectors $\overrightarrow {OA} ,\,\overrightarrow {OB} $ and $\overrightarrow {OC} $ shown in the following figure. Radius of the circle is $R$.