Let $\overrightarrow C = \overrightarrow A + \overrightarrow B $ then

  • A

    $|\overrightarrow {C|} $ is always greater then $|\overrightarrow A |$

  • B

    It is possible to have $|\overrightarrow C |\, < \,|\overrightarrow A |$ and $|\overrightarrow C |\, < \,|\overrightarrow B |$

  • C

    $C$ is always equal to $A + B$

  • D

    $C$ is never equal to $A + B$

Similar Questions

Two forces are such that the sum of their magnitudes is $18\; N$ and their resultant is $12\; N$ which is perpendicular to the smaller force. Then the magnitudes of the forces are

  • [AIEEE 2002]

Which of the following forces cannot be a resultant of $5\, N$ and $7\, N$ force...........$N$

$\overrightarrow A = 2\hat i + \hat j,\,B = 3\hat j - \hat k$ and $\overrightarrow C = 6\hat i - 2\hat k$.Value of $\overrightarrow A - 2\overrightarrow B + 3\overrightarrow C $ would be

Explain commutative law for vector addition.

Find the resultant of three vectors $\overrightarrow {OA} ,\,\overrightarrow {OB} $ and $\overrightarrow {OC} $ shown in the following figure. Radius of the circle is $R$.