Two concentric circular coils of ten turns each are situated in the same plane. Their radii are $20$ and $40\, cm$ and they carry respectively $0.2$ and $0.3$ $ampere$ current in opposite direction. The magnetic field in $weber/{m^2}$ at the centre is

  • A

    $\frac{{35}}{4}{\mu _0}$

  • B

    $\frac{{{\mu _0}}}{{80}}$

  • C

    $\frac{7}{{80}}{\mu _0}$

  • D

    $\frac{5}{4}{\mu _0}$

Similar Questions

Find the magnetic field at $P$ due to the arrangement shown

Given below are two statements:

Statement $(I)$: When an object is placed at the centre of curvature of a concave lens, image is formed at the centre of curvature of the lens on the other side.

Statement $(II)$: Concave lens always forms a virtual and erect image.

In the light of the above statements, choose the correct answer from the options given below:

  • [JEE MAIN 2024]

Math List $I$ with List $II$

Choose the correct answer from the option given below:

  • [JEE MAIN 2023]

Do magnetic forces obey Newton’s third law. Verify for two current elements $\overrightarrow {d{l_1}}  = dl\left( {\hat i} \right)$ located at the origin and $\overrightarrow {d{l_2}}  = dl\left( {\hat j} \right)$ located at $ (0, R, 0)$. Both carry current $\mathrm{I}$.

A Rowland ring of mean radius $15\; cm\;3500$ turns of wire wound on a ferromagnetic core of relative permeability $800.$ What is the magnetic field $B$ (in $T$) in the core for a magnetizing current of $1.2\; A?$