Two circles whose radii are equal to $4$ and $8$ intersects at right angles. The length of their common chord is:-
$\frac{16}{\sqrt 5}$
$8$
$4\sqrt 6$
$\frac{8 \sqrt 5}{5}$
Let $S = 0$ is the locus of centre of a variable circle which intersect the circle $x^2 + y^2 -4x -6y = 0$ orthogonally at $(4, 6)$ . If $P$ is a variable point of $S = 0$ , then least value of $OP$ is (where $O$ is origin)
If one common tangent of the two circles $x^2 + y^2 = 4$ and ${x^2} + {\left( {y - 3} \right)^2} = \lambda ,\lambda > 0$ passes through the point $\left( {\sqrt 3 ,1} \right)$, then possible value of $\lambda$ is
The centre of the circle passing through $(0, 0)$ and $(1, 0)$ and touching the circle ${x^2} + {y^2} = 9$ is
The range of values of $'a'$ such that the angle $\theta$ between the pair of tangents drawn from the point $(a, 0)$ to the circle $x^2 + y^2 = 1$ satisfies $\frac{\pi }{2} < \theta < \pi$ is :
A circle $C_1$ of radius $2$ touches both $x$ -axis and $y$ -axis. Another circle $C_2$ whose radius is greater than $2$ touches circle $C_1$ and both the axes. Then the radius of circle $C_2$ is-