समान परिमाण के दो आवेश एक दूसरे से $r$ दूरी पर स्थित हैं और इनके मध्य कार्यरत बल $F$ है। यदि आवेशों के मान आधे कर दिये जायें एवं इनके मध्य की दूरी को दो गुनी कर दी जाये तो इनके मध्य नया बल होगा
$F / 8$
$F / 4$
$4 F$
$F / 16$
दो एकसमान धात्विक गोले $A$ और $B$ जब हवा में एक निश्चित दूरी पर रखे जाते है तो एक-दूसरे को $F$ बल से प्रतिकर्षित करते हैं। एक और समरूप अनावेशित गोला $C$, पहले $A$ के सम्पर्क में, फिर $B$ के सम्पर्क में और अंत में $A$ और $B$ के मध्य बिन्दू पर रखा जाता है। गोले $C$ द्वारा अनुभव किया बल होगा :
सरकंडे ( पिथ) की दो बॉलों (गोलियों) पर समान (बराबर) आवेश है। इन्हें समान लम्बाई की डोरियों (धागे) से एक बिन्दु से लटकाया गया है। संतुलन की अवस्था में इनके बीच की दूसरी $r$ है। दोनों डोरियों को उनकी आधी लम्बाई पर कस कर बाँध दिया जाता है। अब संतुलन की स्थिति में दोनों बॉलों के बीच की दूरी होगा: $V$
दो आवेश वायु में एक-दूसरे से $d$ दूरी पर रखे हैं इनके बीच लगने वाला बल $F$ है। यदि इन्हें $2$ परावैद्युतांक वाले द्रव में डुबो दिया जाये (सभी स्थितियाँ समान रहें), तो अब इनके मध्य लगने वाला बल होगा
दो एकसमान धनावेश $Q$, एक दूसरे से ' $2\,a$ ' दूरी पर स्थिर किए गए हैं। दोनों स्थिर आवेशों के मध्य बिन्दु पर, किसी अन्य ' $m$ ' द्रव्यमान के आवेश $q _0$ को रखा जाता है। दोनों स्थिर आवेशों को जोड़ने वाली रेखा के अनुदिश एक लघु विस्थापन के कारण आवेश $q _0$ सरल आवर्त गति करने लगता है। आवेश $q _0$ के दोलनों का आवर्तकाल होगा :
लम्बाई $l$ की दो द्रव्यमानहीन डोरियो द्वारा एक उभयनिष्ठ बिन्दु से दो एकसमान आवेशित गोले लटकाये गये है, जों कि प्रारम्भ में दूरी $d(d$ $ < < l)$ पर अपनें अन्योन्य विकषर्ण के कारण है। दोंनों गोलों से आवेश एक स्थिर दर से लीक होना प्रारम्भ करता है। इसके परिणाम स्वरूप आवेश एक दूसरे की ओर $v$ वेग से गति करना प्रारम्भ करते है। तब दोनों के बीच दूरी $x$ के फलन के रूप में