Two capacitors each of $1\,\mu F$ capacitance are connected in parallel and are then charged by $200\;volts$ $d.c.$ supply. The total energy of their charges (in $joules$) is

  • A

    $0.01$

  • B

    $0.02$

  • C

    $0.04$

  • D

    $0.06$

Similar Questions

Two capacitors of equal capacitance $(C_1 = C_2)$ are shown in the figure. Initially, while the switch $S$ is open, one of the capacitors is uncharged and the other carries charge $Q_0$. The energy stored in the charged capacitor is $U_0$. Sometimes after the switch is closed, the capacitors $C_1$ and $C_2$ carry charges $Q_1$ and $Q_2$, respectively; the voltages across the capacitors are $ V_1$ and $V_2$; and the energies stored in the capacitors are $U_1$ and $U_2$. Which of the following statements is INCORRECT ? 

A parallel plate capacitor whose capacitance $C$ is $14\, pF$ is charged by a battery to a potential difference $V =12\, V$ between its plates. The charging battery is now disconnected and a porcelin plate with $k =7$ is inserted between the plates, then the plate would oscillate back and forth between the plates with a constant mechanical energy of $..........pJ$. (Assume no friction)

  • [JEE MAIN 2021]

Find the ratio of energy stored in $5\,\mu F$ and $4\,\mu F$ capacitor in the given circuit in steady state

Two small spheres each carrying a charge $q$ are placed $r$ metre apart. If one of the spheres is taken around the other one in a circular path of radius $r$, the work done will be equal to

A parallel plate capacitor has a uniform electric field ' $\overrightarrow{\mathrm{E}}$ ' in the space between the plates. If the distance between the plates is ' $\mathrm{d}$ ' and the area of each plate is ' $A$ ', the energy stored in the capacitor is : $\left(\varepsilon_{0}=\right.$ permittivity of free space)

  • [NEET 2021]