दो गेंदें एक ही वेग से परन्तु क्षैतिज से अलग अलग कोणों पर प्रक्षेपित की जाती हैं. उनके परास एक बराबर हैं. यदि एक गेंद का प्रक्षेपण कोण $30^{\circ}$ है तथा गेंद को प्राप्त अधिकतम ऊंचाई का मान $h$ है तो दूसरी गेंद द्वारा प्राप्त अधिक्तम ऊंचाई का मान कितना होगा?
$h$
$3 h$
$6 h$
$10 h$
पानी का एक फव्वारा धरती पर चारों तरफ पानी छिड़कता है। यदि फव्वारे से निकल रहे पानी की चाल $v$ है, तब फब्वारें के चारों तरफ गीला होने वाला अधिकतम कुल क्षैत्रफल हैं:
$(a)$ सिद्ध कीजिए कि किसी प्रक्षेप्य के $x -$अक्ष तथा उसके वेग के बीच के कोण को समय के फलन के रूप में निम्न प्रकार से व्यक्त कर सकते हैं|
$\theta(t)=\tan ^{-1}\left(\frac{v_{0 y}-g t}{v_{0 x}}\right)$
$(b)$ सिद्ध कीजिए कि मूल बिंदु से फेंके गए प्रक्षेप्य कोण का मान $\theta_{0}=\tan ^{-1}\left(\frac{4 h_{m}}{R}\right)$ होगा। यहाँ प्रयुक्त प्रतीकों के अर्थ सामान्य हैं।
एक पिण्ड को क्षैतिज से $45^o$ के कोण पर $20$ मीटर/सैकण्ड के वेग से प्रक्षेपित किया जाता है। प्रक्षेप्य पथ का समीकरण $h = Ax - B{x^2}$ है, जहाँ $h$-ऊँचाई, $x-$क्षैतिज दूरी तथा $A$ और $B$ नियतांक है। $A$ और $B$ का अनुपात होगा $(g = 10\,m{s^{ - 2}})$
एक कण किसी समतल में नियत त्वरण से किन्तु प्रारंभिक वेग की दिशा से भिन्न दिशा में गति करता है। कण का बिन्दुपथ होगा
एक गेंद किसी खिलाड़ी द्वारा फेंकने पर दूसरे खिलाड़ी तक $2$ सैकण्ड में पहुँचती है, तो प्रक्षेपण बिन्दु के ऊपर गेंद द्वारा प्राप्त अधिकतम ऊँचाई होगी लगभग ....... $m$