Three long, straight parallel wires carrying current, are arranged as shown in figure. The force experienced by a $25\, cm$ length of wire $C$ is
$10^{-3}\, N$
$2.5 \times 10^{-3}\, N$
Zero
$1.5 \times 10^{-3}\, N$
A charge of $2.0\,\mu C$ moves with a speed of $3.0 \times {10^6}\,m{s^{ - 1}}$ along $+ ve$ $X$ - axis $A$ magnetic field of strength $\vec B = - 0.2\,\,\hat k$ $Tesla$ exists in space. What is the magnetic force $({\overrightarrow F _m})$ on the charge
A square current carrying loop is suspended in a uniform magnetic field acting in the plane of the loop. If the force on one arm of the loop is $\overrightarrow F$ the net force on the remaining three arms of the loop is
Two long and parallel straight wires $A$ and $B$ carrying currents of $8.0\, A$ and $5.0\, A$ in the same direction are separated by a distance of $4.0\, cm$. Estimate the force on a $10\, cm$ section of wire $A$
An infinitely long, straight conductor $AB$ is fixed and a current is passed through it. Another movable straight wire $CD$ of finite length and carrying current is held perpendicular to it and released. Neglect weight of the wire
A straight wire of length $0.5\, metre$ and carrying a current of $1.2\, ampere$ placed in a uniform magnetic field of induction $2\, Tesla$. The magnetic field is perpendicular to the length of the wire. The force on the wire is.......$N$