ત્રણ સિક્કા એકવાર ઉછાળવામાં આવે છે. નીચેની ઘટનાઓનું વર્ણન કરો :
પરસ્પર નિવારક હોય પણ નિઃશેષ ન હોય તેવી ત્રણ ઘટનાઓ
When three coins are tossed, the sample space is given by
$S =\{ HHH , \,HHT , \,HTH ,\, HTT , \,THH , \,THT , \,TTH , \,TTT \}$
Three events that are mutually exclusive but not exhaustive can be
$A:$ getting exactly three heads
$B:$ getting one head and two tails
$C:$ getting one tail and two heads
i.e. $A=\{H H H\}$
$B =\{ HTT , \,THT, \, THH \}$
$C =\{ HHT , \,HTH , \,THH \}$
This is because $A \cap B=B \cap C=C \cap A=\phi,$ but $A \cup B \cup C \neq S$
જો ત્રણ વિધ્યાર્થીઓ $A, B, C$ એ કોઇ સવાલનુ સ્વત્રંત રીતે સમાધાન કરવાની સંભાવના અનુક્રમે $\frac{1}{3},\frac{1}{4}$ અને $\frac{1}{5}$ હોય તો સવાલનુ સમાધાન થાય તેની સંભાવના મેળવો.
બે પાસાઓ ફેંકવામાં આવે છે. ઘટનાઓ $A, B$ અને $C$ નીચે આપેલ છે.
$A :$ પહેલા પાસા ઉપર યુગ્મ સંખ્યા મળે છે.
$B:$ પહેલા પાસા ઉપર અયુગ્મ સંખ્યા મળે છે.
$C :$ પાસાઓ ઉપર મળતી સંખ્યાઓનો સરવાળો $5$ કે $5$ થી ઓછો છે.
$A =B'$
નીચે દર્શાવેલ પ્રયોગ માટે નિદર્શાવકાશ દર્શાવો : એક સિક્કાને ઉછાળવામાં આવ્યો છે અને સિક્કા પર છાપ મળે ત્યારે પાસાને ફેંકવામાં આવે છે.
ત્રણ સિક્કા એક વાર ઉછાળવામાં આવે છે. નીચે આપેલ ઘટનાની સંભાવના શોધો.
$2$ છાપ મળે.
નીચે બે વિધાનો આપેલા છે : ધારોકે $\Omega$ નિદર્શાવકાશ અને $A \subseteq \Omega$ એક ધટના છે.
$(S1) :$ જો $P(A) =0$ હોય, તો $A =\emptyset$
$(S2) :$ જો $P ( A )=1$ હોય, તો $A =\Omega$
તો