Three blocks of masses ${m_1},\,{m_2}$ and ${m_3}$ are connected by massless strings as shown on a frictionless table. They are pulled with a force ${T_3} = 40\,N$. If ${m_1} = 10\,kg,\,{m_2} = 6\,kg$ and ${m_3} = 4\,kg$, the tension ${T_2}$ will be ........ $N$
$20$
$40$
$10 $
$32$
A body of mass $5\,kg$ is suspended by a spring balance on an inclined plane as shown in figure. (in $N$)
As shown in figure, a $70\,kg$ garden roller is pushed with a force of $\overrightarrow{ F }=200\,N$ at an angle of $30^{\circ}$ with horizontal. The normal reaction on the roller is $.......\,N$ $\left(\right.$ Given $\left.g =10\,m s ^{-2}\right)$
A rope of mass $5 \,kg$ is hanging between two supports as shown alongside. The tension at the lowest point of the rope is close to ........... $N$ (take, $g=10 \,m / s ^{2}$ )
A $1 \mathrm{~kg}$ mass is suspended from the ceiling by a rope of length $4 \mathrm{~m}$. A horizontal force ' $F$ ' is applied at the mid point of the rope so that the rope makes an angle of $45^{\circ}$ with respect to the vertical axis as shown in figure. The magnitude of $F$ is: