Electric flux through a surface of area $100$ $m^2$ lying in the $xy$ plane is (in $V-m$) if $\vec E = \hat i + \sqrt 2 \hat j + \sqrt 3 \hat k$
$100$
$141.4$
$173.2$
$200$
The electric field components in Figure are $E_{x}=\alpha x^{1 / 2}, E_{y}=E_{z}=0,$ in which $\alpha=800 \;N / C\, m ^{1 / 2} .$ Calculate
$(a)$ the flux through the cube, and
$(b)$ the charge within the cube. Assume that $a=0.1 \;m$
When the electric flux associated with closed surface becomes positive, zero or negative ?
A point charge causes an electric flux of $-1.0 \times 10^{3}\; N\;m ^{2} / C$ to pass through a spherical Gaussian surface of $10.0\; cm$ radius centred on the charge.
$(a)$ If the radius of the Gaussian surface were doubled, how much flux would pass through the surface?
$(b)$ What is the value of the point charge?
A charge $Q$ is enclosed by a Gaussian spherical surface of radius $R$. If the radius is doubled, then the outward electric flux will
A charge particle is free to move in an electric field. It will travel