एक वस्तु का वेग समय $t = 0$ पर उत्तरपूर्व दिशा में $10\sqrt 2 $ मी/सै है तथा यह $2$ मी/सै$^{2}$ के त्वरण से गति कर रही है, त्वरण की दिशा दक्षिण की ओर है। $5$ सैकण्ड पश्चात् वस्तु के वेग का परिमाण तथा दिशा होगी
$10$ मी/सै पूर्व की ओर
$10$ मी/सै उत्तर की ओर
$10 $ मी/सै दक्षिण की ओर
$10 $ मी/सै उत्तर-पूर्व की ओर
किसी दिक्स्थान पर एक स्वेच्छ गति के लिए निम्नलिखित संबंधों में से कौन-सा सत्य है ?
$(a)$ $v _{\text {औसत }}=(1 / 2)\left( v \left(t_{1}\right)+ v \left(t_{2}\right)\right)$
$(b)$ $v _{\text {औमन }}=\left[ r \left(t_{2}\right)- r \left(t_{1}\right)\right] /\left(t_{2}-t_{1}\right)$
$(c)$ $v (t)= v (0)+ a t$
$(d)$ $r (t)= r (0)+ v (0) t+(1 / 2) a t^{2}$
$(e)$ $a _{\text {औमन }}=\left[ v \left(t_{2}\right)- v \left(t_{1}\right)\right] /\left(t_{2}-t_{1}\right)$
यहाँ ' औसत' का आशय समय अंतराल $t_{2}$ व $t_{1}$ से संबांधित भौतिक राशि के औसत मान से है ।
एक कण वेग $\overrightarrow{ v }=k( y\hat i +{ x \hat j})$ से गतिशील है, जहाँ $K$ एक स्थिरांक है। इसके पथ का व्यापक समीकरण है।
एक प्रक्षेपण (projectile) को समतल धरातल से गति $v$ तथा प्रक्षेप कोण $\theta$ से प्रक्षेपित किया गया है। जब गुरूत्वाकर्षण के कारण त्वरण $g$ है तो प्रक्षेपण की परास $d$ है। यदि अपने प्रक्षेप पथ की अधिकतम ऊँचाई पर, प्रक्षेपण एक अन्य क्षेत्र में प्रवेश करता है जिसका प्रभावी त्वरण (effective acceleration) $g^{\prime}=\frac{g}{0.81}$ है तब नयी परास $d^{\prime}$ $=n d$ है। $n$ का मान है।. . . . . .
एक वस्तु पूर्व दिशा कि ओर $30$ मी/से के वेग से जा रही है | $10$ सेकंड के बाद वह $40$ मी /से के वेग से उत्तर कि ओर गति करती है |वस्तु का औसत त्वरण है
कोई कण $t=0$ क्षण पर मूल बिंदु से $10 \hat{ j } m s ^{-1}$ के वेग से चलना प्रांरभ करता है तथा $x-y$ समतल में एकसमान त्वरण $(8.0 \hat{ i }+2.0 \hat{ j }) m s ^{-2}$ से गति करता है ।
$(a)$ किस क्षण कण का $x -$ निर्देशांक $16\, m$ होगा ? इसी समय इसका $y -$ निर्देशांक कितना होगा ?
$(b)$ इस क्षण कण की चाल कितनी होगी ?