The values of $\mathrm{m}, \mathrm{n}$, for which the system of equations
$ x+y+z=4 $
$ 2 x+5 y+5 z=17 $
$ x+2 y+m z=n$
has infinitely many solutions, satisfy the equation :
$m^2+n^2-m-n=46$
$m^2+n^2+m+n=64$
$\mathrm{m}^2+\mathrm{n}^2+\mathrm{mn}=68$
$m^2+n^2-m n=39$
Find values of $\mathrm{k}$ if area of triangle is $4$ square units and vertices are $(\mathrm{k}, 0),(4,0),(0,2)$
Let $m$ and $M$ be respectively the minimum and maximum values of
$\left|\begin{array}{ccc}\cos ^{2} x & 1+\sin ^{2} x & \sin 2 x \\ 1+\cos ^{2} x & \sin ^{2} x & \sin 2 x \\ \cos ^{2} x & \sin ^{2} x & 1+\sin 2 x\end{array}\right|$.
Then the ordered pair $( m , M )$ is equal to
If $'a'$ is non real complex number for which system of equations $ax -a^2y + a^3z$ = $0$ , $-a^2x + a^3y + az$ = $0$ and $a^3x + ay -a^2z$ = $0$ has non trivial solutions, then $|a|$ is
If $S$ is the set of distinct values of $'b'$ for which the following system of linear equations $x + y + z = 1;x + ay + z = 1;ax + by + z = 0$ has no solution , then $S$ is :