The values of $\mathrm{m}, \mathrm{n}$, for which the system of equations

$ x+y+z=4 $

$ 2 x+5 y+5 z=17 $

$ x+2 y+m z=n$

has infinitely many solutions, satisfy the equation :

  • [JEE MAIN 2024]
  • A

    $m^2+n^2-m-n=46$

  • B

    $m^2+n^2+m+n=64$

  • C

    $\mathrm{m}^2+\mathrm{n}^2+\mathrm{mn}=68$

  • D

    $m^2+n^2-m n=39$

Similar Questions

The equation $\left| {\begin{array}{*{20}{c}}{{{(1 + x)}^2}}&{{{(1 - x)}^2}}&{ - \,(2 + {x^2})}\\{2x + 1}&{3x}&{1 - 5x}\\{x + 1}&{2x}&{2 - 3x}\end{array}} \right|$ $+$ $\left| {\begin{array}{*{20}{c}}{{{(1 + x)}^2}}&{2x + 1}&{x + 1}\\{{{(1 - x)}^2}}&{3x}&{2x}\\{1 - 2x}&{3x - 2}&{2x - 3}\end{array}} \right|$ $= 0$

Find values of $\mathrm{k}$ if area of triangle is $4$ square units and vertices are  $(\mathrm{k}, 0),(4,0),(0,2)$

Let $m$ and $M$ be respectively the minimum and maximum values of

$\left|\begin{array}{ccc}\cos ^{2} x & 1+\sin ^{2} x & \sin 2 x \\ 1+\cos ^{2} x & \sin ^{2} x & \sin 2 x \\ \cos ^{2} x & \sin ^{2} x & 1+\sin 2 x\end{array}\right|$.

Then the ordered pair $( m , M )$ is equal to

 

  • [JEE MAIN 2020]

If $'a'$ is non real complex number for which system of equations $ax -a^2y + a^3z$ = $0$ , $-a^2x + a^3y + az$ = $0$ and $a^3x + ay -a^2z$ = $0$ has non trivial solutions, then $|a|$ is 

If $S$ is the set of distinct values of $'b'$ for which the following system of linear equations $x + y + z = 1;x + ay + z = 1;ax + by + z = 0$ has no solution , then $S$ is :

  • [JEE MAIN 2017]