The value of the determinant $\left| {\,\begin{array}{*{20}{c}}1&1&1\\{b + c}&{c + a}&{a + b}\\{b + c - a}&{c + a - b}&{a + b - c}\end{array}\,} \right|$ is
$abc$
$a + b + c$
$ab + bc + ca$
$0$
At what value of $x,$ will $\left| {\,\begin{array}{*{20}{c}}{x + {\omega ^2}}&\omega &1\\\omega &{{\omega ^2}}&{1 + x}\\1&{x + \omega }&{{\omega ^2}}\end{array}\,} \right| = 0$
Let $P=\left[\begin{array}{ccc}1 & 0 & 0 \\ 4 & 1 & 0 \\ 16 & 4 & 1\end{array}\right]$ and $I$ be the identity matrix of order $3$ . If $\left.Q=q_{i j}\right]$ is a matrix such that $P^{50}-Q=I$, then $\frac{q_{31}+q_{32}}{q_{21}}$ equals
Using the property of determinants and without expanding, Prove that
$\left|\begin{array}{lll}x & a & x+a \\ y & b & y+b \\ z & c & z+c\end{array}\right|=0$
Prove that $\left|\begin{array}{ccc}a & a+b & a+b+c \\ 2 a & 3 a+2 b & 4 a+3 b+2 c \\ 3 a & 6 a+3 b & 10 a+6 b+3 c\end{array}\right|=a^{3}$
The value of $x$ obtained from the equation $\left| {\,\begin{array}{*{20}{c}}{x + \alpha }&\beta &\gamma \\\gamma &{x + \beta }&\alpha \\\alpha &\beta &{x + \gamma }\end{array}\,} \right| = 0$ will be