The value of $\left| {\,\begin{array}{*{20}{c}}{265}&{240}&{219}\\{240}&{225}&{198}\\{219}&{198}&{181}\end{array}\,} \right|$ is equal to

  • A

    $0$

  • B

    $679$

  • C

    $779$

  • D

    $1000$

Similar Questions

Which of the following matrices can $NOT$ be obtained from the matrix $\left[\begin{array}{cc}-1 & 2 \\ 1 & -1\end{array}\right]$ by a single elementary row operation?

  • [JEE MAIN 2022]

If $a + b + c = 0$, then the solution of the equation $\left| {\,\begin{array}{*{20}{c}}{a - x}&c&b\\c&{b - x}&a\\b&a&{c - x}\end{array}\,} \right| = 0$ is

$\left| {\,\begin{array}{*{20}{c}}{{a^2}}&{{b^2}}&{{c^2}}\\{{{(a + 1)}^2}}&{{{(b + 1)}^2}}&{{{(c + 1)}^2}}\\{{{(a - 1)}^2}}&{{{(b - 1)}^2}}&{{{(c - 1)}^2}}\end{array}\,} \right| = $

If $a,b,c$ are in $A.P$., then the value of $\left| {\,\begin{array}{*{20}{c}}{x + 2}&{x + 3}&{x + a}\\{x + 4}&{x + 5}&{x + b}\\{x + 6}&{x + 7}&{x + c}\end{array}\,} \right|$ is

If $\mathrm{a, b, c},$ are in $\mathrm{A.P}$, then the determinant

$\left|\begin{array}{lll}x+2 & x+3 & x+2 a \\ x+3 & x+4 & x+2 b \\ x+4 & x+5 & x+2 c\end{array}\right|$ is