The value of $\sum\limits_{r = 0}^{n - 1} {\frac{{^n{C_r}}}{{^n{C_r} + {\,^n}{C_{r + 1}}}}} $ equals
$n + 1$
$\frac{n}{2}$
$n + 2$
None of these
Statement$-1:$ The number of ways of distributing $10$ identical balls in $4$ distinct boxes such that no box is empty is $^9C_3 .$
Statement$-2:$ The number of ways of choosing any $3$ places from $9$ different places is $^9C_3 $.
If $^8{C_r}{ = ^8}{C_{r + 2}}$, then the value of $^r{C_2}$ is
For non-negative integers $s$ and $r$, let
$\binom{s}{r}=\left\{\begin{array}{ll}\frac{s!}{r!(s-r)!} & \text { if } r \leq s \\ 0 & \text { if } r>s\end{array}\right.$
For positive integers $m$ and $n$, let
$(m, n) \sum_{ p =0}^{ m + n } \frac{ f ( m , n , p )}{\binom{ n + p }{ p }}$
where for any nonnegative integer $p$,
$f(m, n, p)=\sum_{i=0}^{ p }\binom{m}{i}\binom{n+i}{p}\binom{p+n}{p-i}$
Then which of the following statements is/are $TRUE$?
$(A)$ $(m, n)=g(n, m)$ for all positive integers $m, n$
$(B)$ $(m, n+1)=g(m+1, n)$ for all positive integers $m, n$
$(C)$ $(2 m, 2 n)=2 g(m, n)$ for all positive integers $m, n$
$(D)$ $(2 m, 2 n)=(g(m, n))^2$ for all positive integers $m, n$
In an election the number of candidates is $1$ greater than the persons to be elected. If a voter can vote in $254$ ways, then the number of candidates is