The unit of percentage error is
Same as that of physical quantity
Different from that of physical quantity
Percentage error is unit less
Errors have got their own units which are different from that of physical quantity measured
The percentage error in measurement of a physical quantity $m$ given by $m = \pi \tan \theta $ is minimum when $\theta $ $=$ .......... $^o$ (Assume that error in $\theta $ remain constant)
Durring Searle's experiment, zero of the Vernier scale lies between $3.20 \times 10^{-2} m$ and $3.25 \times 10^{-2} m$ of the main scale. The $20^{\text {th }}$ division of the Vernier scale exactly coincides with one of the main scale divisions. When an additional load of $2 \ kg$ is applied to the wire, the zero of the Vernier scale still lies between $3.20 \times 10^{-2} m$ and $3.25 \times 10^{-2} m$ of the main scale but now the $45^{\text {th }}$ division of Vernier scale coincides with one of the main scale divisions. The length of the thin metallic wire is $2 m$. and its cross-sectional area is $8 \times 10^{-7} m ^2$. The least count of the Vernier scale is $1.0 \times 10^{-5} m$. The maximum percentage error in the Young's modulus of the wire is
The random error in the arithmetic mean of $100$ observations is $x$; then random error in the arithmetic mean of $400$ observations would be
If a copper wire is stretched to make its radius decrease by $0.1\%$ , then percentage increase in resistance is approximately .......... $\%$
A student uses a simple pendulum of exactly $1 \mathrm{~m}$ length to determine $\mathrm{g}$, the acceleration due to gravity. He uses a stop watch with the least count of $1 \mathrm{sec}$ for this and records $40$ seconds for $20$ oscillations. For this observation, which of the following statement$(s)$ is (are) true?
$(A)$ Error $\Delta T$ in measuring $T$, the time period, is $0.05$ seconds
$(B)$ Error $\Delta \mathrm{T}$ in measuring $\mathrm{T}$, the time period, is $1$ second
$(C)$ Percentage error in the determination of $g$ is $5 \%$
$(D)$ Percentage error in the determination of $g$ is $2.5 \%$