Let $\overrightarrow C = \overrightarrow A  + \overrightarrow B$

$(A)$ It is possible to have $| \overrightarrow C | < | \overrightarrow A |$ and $ | \overrightarrow C | < | \overrightarrow B|$

$(B)$ $|\overrightarrow C |$  is always greater than $|\overrightarrow A |$

$(C)$ $|\overrightarrow C |$ may be equal to $|\overrightarrow A | + |\overrightarrow B|$

$(D)$ $|\overrightarrow C |$ is never equal to $|\overrightarrow A | + |\overrightarrow B|$

Which of the above is correct

  • A

    $A$ and $C$

  • B

    $A,B$ and $D$

  • C

    $A, B$ and $C$

  • D

    $B$ and $C$

Similar Questions

If $A$ and $B$ are two non-zero vectors having equal magnitude, the angle between the vectors $A$ and $A - B$ is

Two vectors having equal magnitudes $A$ make an angle $\theta$ with each other. The magnitude and direction of the resultant are respectively

If $a$ and $b$ are two units vectors inclined at an angle of $60^{\circ}$ to each other, then

When $n$ vectors of different magnitudes are added, we get a null vector. Then the value of $n$ cannot be

The vectors $\vec{A}$ and $\vec{B}$ are such that

$|\vec{A}+\vec{B}|=|\vec{A}-\vec{B}|$

The angle between the two vectors is

  • [AIPMT 1991]