रैखिक समीकरण निकाय $\lambda x+2 y+2 z=5$, $2 \lambda x+3 y+5 z=8$, $4 x+\lambda y+6 z=10$
के अनन्त हल हैं जब $\lambda=2$
का मात्र एक हल है जब $\lambda=-8$
का कोई हल नहीं है जब $\lambda=8$
का कोई हल नहीं है जब $\lambda=2$
यदि $[ x ]$ महत्तम पूर्णांक $\leq x$ है, तो रैखिक समीकरण निकाय $[\sin \theta] x +[-\cos \theta] y =0$ $[\cot \theta] x + y =0$
प्रत्येक में $k$ का मान ज्ञात कीजिए यदि त्रिभुजों का क्षेत्रफल $4$ वर्ग इकाई है जहाँ शीर्षबिंदु निम्नलिखित हैं:
$(\mathrm{k}, 0),(4,0),(0,2)$
रैखिक समीकरण निकाय $\mathrm{ax}+\mathrm{y}+\mathrm{z}=1$, $x+a y+z=1, x+y+a z=\beta$ के लिए निम्न में से कौनसा कथन सही नहीं है ?
$\left| {\,\begin{array}{*{20}{c}}1&1&1\\a&b&c\\{{a^3}}&{{b^3}}&{{c^3}}\end{array}\,} \right| = $
$\left| {\,\begin{array}{*{20}{c}}1&5&\pi \\{{{\log }_e}e}&5&{\sqrt 5 }\\{{{\log }_{10}}10}&5&e\end{array}\,} \right| = $