The sum of the numbers between $100$ and $1000$, which is divisible by $9$ will be
$55350$
$57228$
$97015$
$62140$
For $\mathrm{x} \geq 0$, the least value of $\mathrm{K}$, for which $4^{1+\mathrm{x}}+4^{1-\mathrm{x}}$, $\frac{\mathrm{K}}{2}, 16^{\mathrm{x}}+16^{-\mathrm{x}}$ are three consecutive terms of an $A.P.$ is equal to :
Let $a_1, a_2, a_3, \ldots$ be in an arithmetic progression of positive terms.
Let $\mathrm{A}_{\mathrm{k}}=\mathrm{a}_1{ }^2-\mathrm{a}_2{ }^2+\mathrm{a}_3{ }^2-\mathrm{a}_4{ }^2+\ldots+\mathrm{a}_{2 \mathrm{k}-1}{ }^2-\mathrm{a}_{2 \mathrm{k}}{ }^2$.
If $\mathrm{A}_3=-153, \mathrm{~A}_5=-435$ and $\mathrm{a}_1{ }^2+\mathrm{a}_2{ }^2+\mathrm{a}_3{ }^2=66$, then $\mathrm{a}_{17}-\mathrm{A}_7$ is equal to....................
If ${a_1} = {a_2} = 2,\;{a_n} = {a_{n - 1}} - 1\;(n > 2)$, then ${a_5}$ is
In an $\mathrm{A.P.}$ if $m^{\text {th }}$ term is $n$ and the $n^{\text {th }}$ term is $m,$ where $m \neq n$, find the ${p^{th}}$ term.