The sum of distinct values of $\lambda$ for which the system of equations

$(\lambda-1) x+(3 \lambda+1) y+2 \lambda z=0$

$(\lambda-1) x+(4 \lambda-2) y+(\lambda+3) z=0$

$2 x+(3 \lambda+1) y+3(\lambda-1) z=0$

has non-zero solutions, is

  • [JEE MAIN 2020]
  • A

    $3$

  • B

    $0$

  • C

    $6$

  • D

    $9$

Similar Questions

If the system of linear equations $2 \mathrm{x}+2 \mathrm{ay}+\mathrm{az}=0$ ; $2 x+3 b y+b z=0$ ; $2 \mathrm{x}+4 \mathrm{cy}+\mathrm{cz}=0$ ; where $a, b, c \in R$ are non-zero and distinct; has a non-zero solution, then 

  • [JEE MAIN 2020]

$\left| {\,\begin{array}{*{20}{c}}a&b&c\\b&c&a\\c&a&b\end{array}\,} \right| = $

If the system of linear equations $2 x-3 y=\gamma+5$ ; $\alpha x+5 y=\beta+1$, where $\alpha, \beta, \gamma \in R$ has infinitely many solutions, then the value of $|9 \alpha+3 \beta+5 \gamma|$ is equal to

  • [JEE MAIN 2022]

If $'a'$ is non real complex number for which system of equations $ax -a^2y + a^3z$ = $0$ , $-a^2x + a^3y + az$ = $0$ and $a^3x + ay -a^2z$ = $0$ has non trivial solutions, then $|a|$ is 

Given the system of equation $a(x + y + z)=x,b(x + y + z) = y, c(x + y + z) = z$ where $a,b,c$  are non-zero real numbers. If the real numbers $x,y,z$ are such that $xyz \neq 0,$ then  $(a + b + c)$ is equal to-