The set having ions which are coloured and paramagnetic both is :
$\mathrm{Sc}^{3+}, \mathrm{V}^{5+}, \mathrm{Ti}^{4+}$
$\mathrm{Cu}^{2+}, \mathrm{Cr}^{3+}, \mathrm{Sc}^{+}$
$\mathrm{Ni}^{2+}, \mathrm{Mn}^{7+}, \mathrm{Hg}^{2+}$
$\mathrm{Cu}^{+}, \mathrm{Zn}^{2+}, \mathrm{Mn}^{4+}$
Spin only magnetic moment of $\left[ MnBr _{6}\right]^{4-}$ is $.....\,B.M.$ (round off to the closest integer)
Although $\mathrm{Cr}^{3+}$ and $\mathrm{Co}^{2+}$ ions have same number of unpaired electrons but the magnetic moment of $\mathrm{Cr}^{3+}$ is $3.87$ $B.M.$ and that of $\mathrm{Co}^{2+}$ is $4.87$ $B.M.$ Why ?
The metal ion which does not form coloured compound is
Calculate the 'spin only' magnetic moment of $M ^{2+}(\operatorname{aq})$ ion $(Z=27)$
Which of the comparison regarding $Zn,\,Cd,\,Hg$ is/are incorrect ?
$(I)$ $ZnCl_2$ is ionic whereas $CdCl_2$ and $HgCl_2$ are covalent
$(II)$ $Zn$ and $Cd$ dissolves in dilute acid $(HCl)$ liberating $H_2$ but $Hg$ can not
$(III)$ $Zn$ and $Cd$ forming with ppt. of $Zn(OH)_2$ and $Cd(OH)_2$ but $Hg$ forms coloured ppt. of
$(IV)$ all from $A_2^{2+}$ type ion