The roots of the determinant equation (in $x$) $\left| {\,\begin{array}{*{20}{c}}a&a&x\\m&m&m\\b&x&b\end{array}\,} \right| = 0$
$x = a,b$
$x = - a, - b$
$x = - a,b$
$x = a, - b$
If $D_1$ and $D_2$ are two $3 \times 3$ diagonal matrices, then
$\left| {\,\begin{array}{*{20}{c}}{1/a}&1&{bc}\\{1/b}&1&{ca}\\{1/c}&1&{ab}\end{array}\,} \right| = $
Let the system of linear equations
$x+y+\alpha z=2$
$3 x+y+z=4$
$x+2 z=1$
have a unique solution $\left(x^{*}, y^{*}, z^{*}\right)$. If $\left(\alpha, x^{*}\right),\left(y^{*}, \alpha\right)$ and $\left(x^{*},-y^{*}\right)$ are collinear points, then the sum of absolute values of all possible values of $\alpha$ is
The number of $\theta \in(0,4 \pi)$ for which the system of linear equations
$3(\sin 3 \theta) x-y+z=2$, $3(\cos 2 \theta) x+4 y+3 z=3$, $6 x+7 y+7 z=9$ has no solution is.
Two fair dice are thrown. The numbers on them are taken as $\lambda$ and $\mu$, and a system of linear equations
$x+y+z=5$ ; $x+2 y+3 z=\mu$ ; $x+3 y+\lambda z=1$
is constructed. If $\mathrm{p}$ is the probability that the system has a unique solution and $\mathrm{q}$ is the probability that the system has no solution, then :