The ratio of the areas of $\odot( O , 6)$ and $\odot( P , 12)$ is ...........

  • A

    $1:6$

  • B

    $1:3$

  • C

    $6:1$

  • D

    $1:4$

Similar Questions

As shown in the diagram, $\overline{ OA }$ and $\overline{O B}$ are two radii of $\odot( O , 35 cm )$ perpendicular to each other. If $OD =12\, cm ,$ find
the area of the shaded region. (in $cm^2$)

While calculating the area of a circle, its radius was taken to be $6\,cm$ instead of $5\,cm .$ The calculated area is $\ldots \ldots \ldots . . \%$ more than the actual area.

The diameter of a circle with area $154\,cm ^{2}$ is $\ldots \ldots \ldots . cm$.

In a circle with radius $21\,cm ,$ the perimeter of a minor sector is $64\,cm .$ Then. the length of the arc of that sector is $\ldots \ldots \ldots . . cm$.

With respect to the given diagram, which of the following correctly matches the information in Part $I$ and Part $II$ ?

 Part $I$  Part $II$
$1.$ $\overline{ OA } \cup \overline{ OB } \cup \widehat{ APB }$  $a.$ Major sector
$2.$ $\overline{ AB } \cup \widehat{ AQB }$ $b.$ Minor segment
$3.$ $\overline{ AB } \cup \widehat{ APB }$ $c.$ Minor sector
$4.$ $\overline{ OA } \cup \overline{ OB } \cup \widehat{ AQB }$ $d.$ Major segment