The rate of the reaction becomes twice when the concentration of reactant becomes $8$ times then the order of the reaction is
$3$
$\frac{1}{2}$
$\frac{1}{3}$
$1$
For the non - stoichimetre reaction $2A + B \rightarrow C + D,$ the following kinetic data were obtained in three separate experiments, all at $298\, K.$
Initial Concentration $(A)$ |
Initial Concentration $(A)$ |
Initial rate of formation of $C$ $(mol\,L^{-1}\,s^{-1})$ |
$0.1\,M$ | $0.1\,M$ | $1.2\times 10^{-3}$ |
$0.1\,M$ | $0.2\,M$ | $1.2\times 10^{-3}$ |
$0.2\,M$ | $0.1\,M$ | $2.4 \times 10^{-3}$ |
The rate law for the formation of $C$ is :
Write general equation of reaction and explain - what is order of reaction ? Which is its value ?
The data for the reaction $A + B \to C$ is
Exp | $[A]_0$ | $[B]_0$ | initial rate |
$1$ | $0.012$ | $0.035$ | $0.10$ |
$2$ | $0.024$ | $0.035$ | $0.80$ |
$3$ | $0.012$ | $0.070$ | $0.10$ |
$4$ | $0.024$ | $0.070$ | $0.80$ |
For the first order decompsition reaction of $N_2O_5$, it is found that -
$(a)$ $2N_2O_5\rightarrow\,\,4NO_2(g)+O_2(g)-\frac{d[N_2O_5]}{dt}=k[N_2O_5]$
$(a)$ $N_2O_5\rightarrow\,\,2NO_2(g)+1/2\,\,O_2(g)-\frac{d[N_2O_5]}{dt}=k'[N_2O_5]$
which of the following is true ?
The rate constant for the reaction, $2{N_2}{O_5} \to 4N{O_2}$ $ + {O_2}$ is $3 \times {10^{ - 5}}{\sec ^{ - 1}}$. If the rate is $2.40 \times {10^{ - 5}}\,mol\,\,litr{e^{{\rm{ - 1}}}}{\sec ^{ - 1}}$. Then the concentration of ${N_2}{O_5}$ (in mol litre $^{-1}$) is