The radical centre of three circles described on the three sides of a triangle as diameter is
The orthocentre
The circumcentre
The incentre of the triangle
The centroid
The condition that the circle ${(x - 3)^2} + {(y - 4)^2} = {r^2}$ lies entirely within the circle ${x^2} + {y^2} = {R^2},$ is
The number of common tangents to two circles ${x^2} + {y^2} = 4$ and ${x^2} - {y^2} - 8x + 12 = 0$ is
Let the mirror image of a circle $c_{1}: x^{2}+y^{2}-2 x-$ $6 y+\alpha=0$ in line $y=x+1$ be $c_{2}: 5 x^{2}+5 y^{2}+10 g x$ $+10 f y +38=0$. If $r$ is the radius of circle $c _{2}$, then $\alpha+6 r^{2}$ is equal to$.....$
Two circles with equal radii intersecting at the points $(0, 1)$ and $(0, -1).$ The tangent at the point $(0, 1)$ to one of the circles passes through the centre of the other circle. Then the distance between the centres of these circles is
The equation of the circle passing through the point $(1, 2)$ and through the points of intersection of $x^2 + y^2 - 4x - 6y - 21 = 0$ and $3x + 4y + 5 = 0$ is given by