The quantum hall resistance $R_H$ is a fundamental constant with dimensions of resistance. If $h$ is Planck's constant and $e$ is the electron charge, then the dimension of $R_H$ is the same as
$\frac{e^2}{h}$
$\frac{h}{e^2}$
$\frac{h^2}{e}$
$\frac{e}{h^2}$
The frequency $(v)$ of an oscillating liquid drop may depend upon radius $(r)$ of the drop, density $(\rho)$ of liquid and the surface tension $(s)$ of the liquid as : $v=r^{ a } \rho^{ b } s ^{ c }$. The values of $a , b$ and $c$ respectively are
A quantity $x$ is given by $\left( IF v^{2} / WL ^{4}\right)$ in terms of moment of inertia $I,$ force $F$, velocity $v$, work $W$ and Length $L$. The dimensional formula for $x$ is same as that of
A dimensionally consistent relation for the volume V of a liquid of coefficient of viscosity ' $\eta$ ' flowing per second, through a tube of radius $r$ and length / and having a pressure difference $P$ across its ends, is
If force $(F),$ velocity $(V)$ and time $(T)$ are taken as fundamental units, then the dimensions of mass are
Consider a simple pendulum, having a bob attached to a string, that oscillates under the action of the force of gravity. Suppose that the period of oscillation of the simple pendulum depends on its length $(l)$, mass of the bob $(m)$ and acceleration due to gravity $(g)$. Derive the expression for its time period using method of dimensions.