The probability of solving a question by three students are $\frac{1}{2},\,\,\frac{1}{4},\,\,\frac{1}{6}$ respectively. Probability of question is being solved will be
$\frac{{33}}{{48}}$
$\frac{{35}}{{48}}$
$\frac{{31}}{{48}}$
$\frac{{37}}{{48}}$
Two students Anil and Ashima appeared in an examination. The probability that Anil will qualify the examination is $0.05$ and that Ashima will qualify the examination is $0.10 .$ The probability that both will qualify the examination is $0.02 .$ Find the probability that Atleast one of them will not qualify the examination.
In a class of $60$ students, $30$ opted for $NCC$ , $32$ opted for $NSS$ and $24$ opted for both $NCC$ and $NSS$. If one of these students is selected at random, find the probability that The student opted for $NCC$ or $NSS$.
$\mathrm{A}$ die is thrown. If $\mathrm{E}$ is the event $'$ the number appearing is a multiple of $3'$ and $F$ be the event $'$ the number appearing is even $^{\prime}$ then find whether $E$ and $F$ are independent ?
Consider an experiment of tossing a coin repeatedly until the outcomes of two consecutive tosses are same. If the probability of a random toss resulting in head is $\frac{1}{3}$, then the probability that the experiment stops with head is.
Let $A$ and $B$ be independent events such that $\mathrm{P}(\mathrm{A})=\mathrm{p}, \mathrm{P}(\mathrm{B})=2 \mathrm{p} .$ The largest value of $\mathrm{p}$, for which $\mathrm{P}$ (exactly one of $\mathrm{A}, \mathrm{B}$ occurs $)=\frac{5}{9}$, is :