The pressure that has to be applied to the ends of a steel wire of length $10\ cm$ to keep its length constant when its temperature is raised by $100^o C$ is: (For steel Young's modulus is $2 \times 10^{11}$ $Nm^{-1}$ and coefficient of thermal expansion is $1.1 \times 10^{-5}$ $K^{-1}$ )
$2.2 \times 10^9 $ $Pa$
$2.2 \times 10^7$ $ Pa$
$2.2 \times 10^6 $ $Pa$
$2.2 \times 10^8$ $ Pa$
The Young's modulus of a steel wire of length $6\,m$ and cross-sectional area $3\,mm ^2$, is $2 \times 11^{11}\,N / m ^2$. The wire is suspended from its support on a given planet. A block of mass $4\,kg$ is attached to the free end of the wire. The acceleration due to gravity on the planet is $\frac{1}{4}$ of its value on the earth. The elongation of wire is (Take $g$ on the earth $=10$ $\left.m / s ^2\right):$
A steel rod of length $1\,m$ and area of cross section $1\,cm^2$ is heated from $0\,^oC$ to $200\,^oC$ without being allowed to extend or bend. Find the tension produced in the rod $(Y = 2.0 \times 10^{11}\,Nm^{-2}$, $\alpha = 10^{-5} C^{-1})$
Two persons pull a wire towards themselves. Each person exerts a force of $200 \mathrm{~N}$ on the wire. Young's modulus of the material of wire is $1 \times 10^{11} \mathrm{~N} \mathrm{~m}^{-2}$. Original length of the wire is $2 \mathrm{~m}$ and the area of cross section is $2 \mathrm{~cm}^2$. The wire will extend in length by . . . . . . . .$\mu \mathrm{m}$.
When a stress of $10^8\,Nm^{-2}$ is applied to a suspended wire, its length increases by $1 \,mm$. Calculate Young’s modulus of wire.
Two wires are made of the same material and have the same volume. The first wire has cross-sectional area $A$ and the second wire has cross-sectional area $3A$. If the length of the first wire is increased by $\Delta l$ on applying a force $F$, how much force is needed to stretch the second wire by the same amount?