The period of function

$f\left( x \right) = {\cos ^2}\left( {\sin x} \right) + {\sin ^2}\left( {\cos x} \right)$ is

  • A

    $\frac{\pi }{4}$

  • B

    $\frac{\pi }{2}$

  • C

    $\pi$

  • D

    $2\pi$

Similar Questions

The domain of the function $f(x){ = ^{16 - x}}{\kern 1pt} {C_{2x - 1}}{ + ^{20 - 3x}}{\kern 1pt} {P_{4x - 5}}$, where the symbols have their usual meanings, is the set

If $f\left( x \right) + 2f\left( {\frac{1}{x}} \right) = 3x,x \ne 0$ and $S = \left\{ {x \in R:f\left( x \right) = f\left( { - x} \right)} \right\}$;then $S :$

  • [JEE MAIN 2016]

Let $A = \left\{ {{x_1},{x_2},{x_3},.....,{x_7}} \right\}$ and $B = \left\{ {{y_1},{y_2},{y_3}} \right\}$ be two sets containing seven and three distinct elements respectively. Then the total number of functions $f:A \to B$ which are onto, if there exist exactly three elements $x$ in $A$ such that $f(x) = {y_2}$ , is equal to

The function $f(x) = \frac{{{{\sec }^{ - 1}}x}}{{\sqrt {x - [x]} }},$ where $[.]$ denotes the greatest integer less than or equal to $x$  is defined for all  $x$  belonging to

Let $f : R \rightarrow R$ be a function such that $f(x)=\frac{x^2+2 x+1}{x^2+1}$. Then

  • [JEE MAIN 2023]