The odds against a certain event is $5 : 2$ and the odds in favour of another event is $6 : 5$. If both the events are independent, then the probability that at least one of the events will happen is
$\frac{{50}}{{77}}$
$\frac{{52}}{{77}}$
$\frac{{25}}{{88}}$
$\frac{{63}}{{88}}$
In class $XI$ of a school $40\%$ of the students study Mathematics and $30 \%$ study Biology. $10 \%$ of the class study both Mathematics and Biology. If a student is selected at random from the class, find the probability that he will be studying Mathematics or Biology.
An event has odds in favour $4 : 5$, then the probability that event occurs, is
In two events $P(A \cup B) = 5/6$, $P({A^c}) = 5/6$, $P(B) = 2/3,$ then $A$ and $B$ are
If $E$ and $F$ are events such that $P(E)=\frac{1}{4}$, $P(F)=\frac{1}{2}$ and $P(E$ and $F )=\frac{1}{8},$ find $:$ $P($ not $E$ and not $F)$.
Let $E$ and $F$ be two independent events. The probability that both $E$ and $F$ happens is $\frac{1}{{12}}$ and the probability that neither $E$ nor $F$ happens is $\frac{1}{2},$ then