Let the line $2 \mathrm{x}+3 \mathrm{y}-\mathrm{k}=0, \mathrm{k}>0$, intersect the $\mathrm{x}$-axis and $\mathrm{y}$-axis at the points $\mathrm{A}$ and $\mathrm{B}$, respectively. If the equation of the circle having the line segment $\mathrm{AB}$ as a diameter is $\mathrm{x}^2+\mathrm{y}^2-3 \mathrm{x}-2 \mathrm{y}=0$ and the length of the latus rectum of the ellipse $\mathrm{x}^2+9 \mathrm{y}^2=\mathrm{k}^2$ is $\frac{\mathrm{m}}{\mathrm{n}}$, where $\mathrm{m}$ and $\mathrm{n}$ are coprime, then $2 \mathrm{~m}+\mathrm{n}$ is equal to

  • [JEE MAIN 2024]
  • A

    $10$

  • B

    $11$

  • C

    $13$

  • D

    $12$

Similar Questions

The locus of the mid point of the line segment joining the point $(4,3)$ and the points on the ellipse $x^{2}+2 y^{2}=4$ is an ellipse with eccentricity

  • [JEE MAIN 2022]

Tangents are drawn from the point $P(3,4)$ to the ellipse $\frac{x^2}{9}+\frac{y^2}{4}=1$ touching the ellipse at points $\mathrm{A}$ and $\mathrm{B}$.

$1.$ The coordinates of $\mathrm{A}$ and $\mathrm{B}$ are

$(A)$ $(3,0)$ and $(0,2)$

$(B)$ $\left(-\frac{8}{5}, \frac{2 \sqrt{161}}{15}\right)$ and $\left(-\frac{9}{5}, \frac{8}{5}\right)$

$(C)$ $\left(-\frac{8}{5}, \frac{2 \sqrt{161}}{15}\right)$ and $(0,2)$

$(D)$ $(3,0)$ and $\left(-\frac{9}{5}, \frac{8}{5}\right)$

$2.$ The orthocentre of the triangle $\mathrm{PAB}$ is

$(A)$ $\left(5, \frac{8}{7}\right)$ $(B)$ $\left(\frac{7}{5}, \frac{25}{8}\right)$

$(C)$ $\left(\frac{11}{5}, \frac{8}{5}\right)$ $(D)$ $\left(\frac{8}{25}, \frac{7}{5}\right)$

$3.$ The equation of the locus of the point whose distances from the point $\mathrm{P}$ and the line $\mathrm{AB}$ are equal, is

$(A)$ $9 x^2+y^2-6 x y-54 x-62 y+241=0$

$(B)$ $x^2+9 y^2+6 x y-54 x+62 y-241=0$

$(C)$ $9 x^2+9 y^2-6 x y-54 x-62 y-241=0$

$(D)$ $x^2+y^2-2 x y+27 x+31 y-120=0$

 Give the answer question $1,2$ and $3.$

  • [IIT 2010]

In an ellipse, the distance between its foci is $6$ and minor axis is $8.$ Then its eccentricity is :

Statement $-1$ : If two tangents are drawn to an ellipse from a single point and if they are perpendicular to each other, then locus of that point is always a circle 

Statement $-2$ : For an ellipse $\frac{{{x^2}}}{{{a^2}}} + \frac{{{y^2}}}{{{b^2}}} = 1$ , locus of that point from which two perpendicular tangents are drawn, is $x^2 + y^2 = (a + b)^2$ .

If the length of the minor axis of ellipse is equal to half of the distance between the foci, then the eccentricity of the ellipse is :

  • [JEE MAIN 2024]