$x$ के कितने वास्तविक मानों के लिये समीकरण $\left| {\,3{x^2} + 12x + 6\,} \right| = 5x + 16$ अस्तित्व रखता है
$4$
$3$
$2$
$1$
माना $\alpha=\max _{x \in R }\left\{8^{2 \sin 3 x} \cdot 4^{4 \cos 3 x}\right\}$ तथा $\beta=\min _{ n \in R }\left\{8^{2 \sin 3 n } \cdot 4^{4 \cos 3 x }\right\}$ हैं। यदि द्विघातीय समीकरण $8 x ^{2}+ bx + c =0$ के मूल $\alpha^{1 / 5}$ तथा $\beta^{1 / 5}$ है, तो $c - b$ का मान बराबर है
यदि समीकरण $4{x^4} - 24{x^3} + 57{x^2} + 18x - 45 = 0$ का एक मूल $3 + i\sqrt 6 $ है, तब अन्य मूल होंगे
मान लें कि $a, b$ अशून्य वास्तविक संख्याएँ हैं तो द्विघात $(quadratic)$ समीकरण $a x^2+(a+b) x+b=0$
के बारे में निम्नलिखित में से कौन से कथन निश्चय ही सत्य हैं?
$(I)$ इसका कम से कम एक शून्यक (root) ऋणात्मक होगा।
$(II)$ इसका कम से कम शक शून्यक धनात्मक होगा।
$(III)$ इसके दोनों शून्यक वास्तविक हैं।
यदि समीकरण ${x^3} - 3x + 2 = 0$ के दो मूल बराबर हों तो मूल होंगे
समीकरण $e^{4 x}-e^{3 x}-4 e^{2 x}-e^{x}+1=0$ के वास्तविक मूलों की संख्या है