The number of circles touching the line $y - x = 0$ and the $y$-axis is
Zero
One
Two
Infinite
The number of integral values of $\lambda $ for which $x^2 + y^2 + \lambda x + (1 - \lambda )y + 5 = 0$ is the equation of a circle whose radius cannot exceed $5$ , is
In the co-axial system of circle ${x^2} + {y^2} + 2gx + c = 0$, where $g$ is a parameter, if $c > 0$ then the circles are
If a circle $C$ passing through $(4, 0)$ touches the circle $x^2 + y^2 + 4x - 6y - 12 = 0$ externally at a point $(1, -1),$ then the radius of the circle $C$ is
The circles $x^2 + y^2 + 2x -2y + 1 = 0$ and $x^2 + y^2 -2x -2y + 1 = 0$ touch each other :-
Let $C$ be a circle passing through the points $A (2,-1)$ and $B (3,4)$. The line segment $AB$ is not a diameter of $C$. If $r$ is the radius of $C$ and its centre lies on the circle $(x-5)^{2}+(y-1)^{2}=\frac{13}{2}$, then $r^{2}$ is equal to