$x \in[0,2 \pi]$ की संख्या, जिनके लिए $\left|\sqrt{2 \sin ^{4} x+18 \cos ^{2} x}-\sqrt{2 \cos ^{4} x+18 \sin ^{2} x}\right|$ $=1$ है

  • [JEE MAIN 2016]
  • A

    $2$

  • B

    $6$

  • C

    $4$

  • D

    $8$

Similar Questions

यदि $\operatorname{cosec} \theta=\frac{ p + q }{ p - q } \quad( p \neq q \neq 0)$ है, तो $\left|\cot \left(\frac{\pi}{4}+\frac{\theta}{2}\right)\right|$ बराबर है

  • [JEE MAIN 2014]

$[2,3]$ अंतराल में समीकरण $\sin \left(x+x^2\right)-\sin \left(x^2\right)=\sin x$ के कितने हल $x$ संभव हैं :

  • [KVPY 2018]

यदि $L =\sin ^{2}\left(\frac{\pi}{16}\right)-\sin ^{2}\left(\frac{\pi}{8}\right)$ तथा $M =\cos  ^{2}$$\left(\frac{\pi}{16}\right)-\sin ^{2}\left(\frac{\pi}{8}\right)$ है, तो

  • [JEE MAIN 2020]

यदि $\tan m\theta  = \tan n\theta $, तो $\theta $ के भिन्न भिन्न मान होंगे

यदि $\cos 3x + \sin \left( {2x - \frac{{7\pi }}{6}} \right) =  - 2$, तब $x = $ (जहाँ $k \in Z$)