ઉપવલય $\frac{{{x^2}}}{{16}} + \frac{{{y^2}}}{3} = 1$ ના બિંદુ $\left( {2,\frac{3}{2}} \right)$ આગળનો અભિલંબ પરવલયને સ્પર્શે છે તો પરવલયનું સમીકરણ ..... થાય
$y^2 = -104 x$
$y^2 = 14x$
$y^2 = 26x$
$y^2 = -14x$
જો નિયામિકાઓ વચ્ચેનું અંતર એ નાભિઓ વચ્ચેના અંતર કરતા ત્રણ ગણું હોય, તો ઉપવલયની ઉત્કેન્દ્રતા.....
ઉપવલય $\frac{{{x^2}}}{{16}}\,\, + \;\,\frac{{{y^2}}}{9}\, = \,\,1$ની નાભિઓમાંથી પસાર થતું અને $(0, 3)$ કેન્દ્ર વાળા વર્તૂળની ત્રિજ્યા....
ધારોકે $C$ એ $(2,0)$ પર કેન્દ્રિત અને ઉપવલય $\frac{x^2}{36}+\frac{y^2}{16}=1$ ની અંદર અંતઃવૃત મોટામા મોટુ વર્તુળ છ. જો $(1,a)$ એ $C$ પર આવેલ હોય, તો $10 \alpha^2=.........$
જેની ઉત્કેન્દ્રતા $e = \frac{1}{2}$ તથા એક નિયામિકા $x=4$ હોય તેવા ઊગમબિંદુ કેન્દ્ર હોય તેવા ઉપવલયનું સમીકરણ મેળવો.
ધારો કે $E$ એ ઉપવલય $\frac{{{x^2}}}{9}\,\, + \;\,\frac{{{y^2}}}{4}\,\, = \,\,1$અને $C$ એ વર્તૂળ $x^2 + y^2 = 9$ છે. $P$ અને $Q$ બરાબર અનુક્રમે બિંદુઓ $(1, 2)$ અને $(2, 1)$ લઈએ, તો