The negation of the compound statement $^ \sim p \vee \left( {p \vee \left( {^ \sim q} \right)} \right)$ is
$\left( {^ \sim p \wedge q} \right) \wedge p$
$\left( {^ \sim p \wedge q} \right) \vee p$
$\left( {^ \sim p \wedge q} \right){ \vee \,^ \sim }p$
$\left( {^ \sim p{ \wedge ^ \sim }q} \right){ \wedge \,^ \sim }q$
Which of the following is logically equivalent to $\sim(\sim p \Rightarrow q)$
Let $\Delta \in\{\wedge, \vee, \Rightarrow, \Leftrightarrow\}$ be such that $(p \wedge q) \Delta((p \vee q) \Rightarrow q)$ is a tautology. Then $\Delta$ is equal to
If $p$ : It rains today, $q$ : I go to school, $r$ : I shall meet any friends and $s$ : I shall go for a movie, then which of the following is the proposition : If it does not rain or if I do not go to school, then I shall meet my friend and go for a movie.
The Boolean expression $\left(\sim\left(p^{\wedge} q\right)\right) \vee q$ is equivalent to
Statement $-1 :$ $\sim (p \leftrightarrow \sim q)$ is equivalent to $p\leftrightarrow q $
Statement $-2 :$ $\sim (p \leftrightarrow \sim q)$ s a tautology